首页> 外文OA文献 >Geophysical and petrological constraints on ocean plate dynamics
【2h】

Geophysical and petrological constraints on ocean plate dynamics

机译:海洋板块动力学的地球物理和岩石学限制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis investigates the formation and subsequent motion of oceanic lithospheric plates through geophysical and petrological methods. Ocean crust and lithosphere forms at mid-ocean ridges as the underlying asthenosphere rises, melts, and flows away from the ridge axis. In Chapters 2 and 3, I present the results from partial melting experiments of mantle peridotite that were conducted in order to examine the mantle melting point, or solidus, beneath a mid-ocean ridge. Chapter 2 determines the peridotite solidus at a single pressure of 1.5 GPa and concludes that the oceanic mantle potential temperature must be -60 °C hotter than current estimates. Chapter 3 goes further to provide a more accurate parameterization of the anhydrous mantle solidus from experiments over a range of pressures. This chapter concludes that the range of potential temperatures of the mantle beneath mid-ocean ridges and plumes is smaller than currently estimated. Once formed, the oceanic plate moves atop the underlying asthenosphere away from the ridge axis. Chapter 4 uses seafloor magnetotelluric data to investigate the mechanism responsible for plate motion at the lithosphere-asthenosphere boundary. The resulting two dimensional conductivity model shows a simple layered structure. By applying petrological constraints, I conclude that the upper asthenosphere does not contain substantial melt, which suggests that either a thermal or hydration mechanism supports plate motion. Oceanic plate motion has dramatically changed the surface of the Earth over time, and evidence for ancient plate motion is obvious from detailed studies of the longer lived continental lithosphere. In Chapter 5, I investigate past plate motion by inverting magnetotelluric data collected over eastern Zambia. The conductivity model probes the Zambian lithosphere and reveals an ancient subduction zone previously suspected from surface studies. This chapter elucidates the complex lithospheric structure of eastern Zambia and the geometry of the tectonic elements in the region, which collided as a result of past oceanic plate motion. Combined, the chapters of this thesis provide critical constraints on ocean plate dynamics.
机译:本文通过地球物理和岩石学方法研究了海洋岩石圈板块的形成和随后的运动。随着下面的软流圈上升,融化并从脊轴线流出,洋壳和岩石圈形成在大洋中脊。在第二章和第三章中,我介绍了地幔橄榄岩部分熔融实验的结果,这些实验是为了检查中洋脊下方的地幔熔点或固相线。第2章确定了在1.5 GPa的单一压力下的橄榄岩固相线,并得出结论,海洋地幔的潜在温度必须比当前估计温度高-60°C。第3章进一步介绍了在一定压力范围内通过实验得出的无水地幔固相线的更精确参数化。本章得出的结论是,中洋海脊和羽流之下的地幔潜在温度范围比目前估计的要小。一旦形成,大洋板块就在下面的软流圈上移动,远离山脊轴线。第4章使用海底大地电磁数据来研究岩石圈-软流圈边界处板块运动的机理。所得的二维电导率模型显示了简单的分层结构。通过施加岩石学上的约束,我得出结论,软流圈上层不包含大量熔体,这表明热机制或水化机制都支持板块运动。随着时间的推移,大洋板块运动极大地改变了地球的表面,并且从对寿命更长的大陆岩石圈的详细研究中可以明显看出古代板块运动的证据。在第5章中,我通过反转赞比亚东部地区收集的大地电磁数据来调查过去的板块运动。电导率模型探测了赞比亚的岩石圈,并揭示了以前从地表研究中怀疑的一个古老的俯冲带。本章阐述了赞比亚东部复杂的岩石圈结构以及该区域的构造要素的几何形状,这些构造元素由于过去的洋板运动而发生了碰撞。结合起来,本文的各章提供了对海洋板块动力学的关键约束。

著录项

  • 作者

    Sarafian, Emily Kathryn;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号